
Online Allocation Case Study: Kidney Exchange
with Compatible Pairs

Sanmay Das

Optimization & Learning Approaches to Resource Allocation
for Social Good (Tutorial @ AAMAS 2019)

1 / 14

Kidney Exchange in Practice

Problems

I A raft of coordination problems

I Exchange fragmentation

Parts of the solution

I More pooling of pairs (national/international exchanges)

I Desensitization / ABO incompatible transplants

I Today: Incorporate compatible pairs into exchanges (Z. Li
et al, EC 2019, forthcoming)

2 / 14

Incorporating Compatible Pairs

I Why would a compatible pair want to enter the exchange?
I Get a better kidney (Gentry et al Am. J. Transplantation,

2007, Anshelevich, Das, & Naamad, SAGT 2009, JAAMAS
2013)

3 / 14

Single Center Analysis
I De-identified data from 2014 - 2016

� All donor and recipient characteristics for calculating LKDPI
(and hence, graft survival)

4 / 14

Dynamic Matching

I Compatible pairs may not be willing to wait any longer than
necessary

I Also debate in the literature about the value of patience
regardless (Akbarpour, S. Li, & Gharan EC 2014, J. Pol.
Econ. Forthcoming; Anderson et al SODA 2015, Operations
Res. 2017; Z. Li et al AMMA 2015, IJCAI 2018)

I New model: Impatient compatible pairs and a pool of patient
incompatible pairs

5 / 14

Hybrid Static-Dynamic Matching Model

6 / 14

Hybrid Static-Dynamic Matching Model

6 / 14

Hybrid Static-Dynamic Matching Model

6 / 14

Hybrid Static-Dynamic Matching Model

6 / 14

Hybrid Static-Dynamic Matching Model

6 / 14

Algorithmic Approach

Most approaches in dynamic settings are based on either greedy or
batching mechanisms. We consider a relaxed IP formulation.

An Oracle for 2-Matching

max

NX

n=1

IX

i=0

wn,ixn,i

s.t.

IX

i=0

xn,i 1, 8n 2 [T]

NX

n=1

xn,i +

IX

j=1

xT+i,j 1, 8i 2 [I]

xn,i 2 {0, 1}, 8n 2 [N], 8i 2 [I]⇤
<latexit sha1_base64="vGmh9gMtxQt1Z7MSEAnHdaTl7fQ=">AAAC/nicbVLLbhMxFPUMrxJeKbBjc0VUhGg0mgEkuqlUiQ3dVEVK2krxJPI4N61bj2c69kAiayR+hQ0LEGLLd7Djb/Ako6hNuJLl43N9zvXjJrkU2oThX8+/cfPW7Tsbd1v37j94+Ki9+fhIZ2XBsc8zmRUnCdMohcK+EUbiSV4gSxOJx8nF+zp//AkLLTLVM7Mc45SdKjERnBlHjTa9p9Tg1NiUTaGCF0B1mY6s2o2q4cECi92wGu7DZ8d2RQXTxUzpFlDJEpQWLyO3bC18dGCCK0aNuBE5BV5C1AU6yQomJSgq1KAXg5ODi+vll6rthj6v6bmZ7W2Lqnu+bihqw/146bcsLBS1YTei1Urxg3hNPHzVGrU7YRDOA9ZB1IAOaeJw1P5DxxkvU1SGS6b1IApzE1tWGMElVi1aaswZv2CnOHBQsRR1bOffV8GWY8bgDuGGMjBnryosS7WepYnbmTJzpldzNfm/3KA0k53YCpWXBhVfFJqUEkwGdS/AWBTIjZw5wHgh3FmBn7GCceM6pn6EaPXK6+DodRC9CcKPbzt7O81zbJBn5Dl5SSLyjuyRD+SQ9An3rPfV++798L/43/yf/q/FVt9rNE/ItfB//wMo9OqY</latexit>

Weights (match quality)

Match variables

Online agents
(compatible pairs)

Standby agents
(incompatible pairs)

All agents

Each online agent matches either with
itself (i=0) or with a standby agent (i>0)

Each standby agent matches with
exactly one other agent

7 / 14

Algorithmic Approach

Most approaches in dynamic settings are based on either greedy or
batching mechanisms. We consider a relaxed IP formulation.

An Oracle for 2-Matching

max

NX

n=1

IX

i=0

wn,ixn,i

s.t.

IX

i=0

xn,i 1, 8n 2 [T]

NX

n=1

xn,i +

IX

j=1

xT+i,j 1, 8i 2 [I]

xn,i 2 {0, 1}, 8n 2 [N], 8i 2 [I]⇤
<latexit sha1_base64="vGmh9gMtxQt1Z7MSEAnHdaTl7fQ=">AAAC/nicbVLLbhMxFPUMrxJeKbBjc0VUhGg0mgEkuqlUiQ3dVEVK2krxJPI4N61bj2c69kAiayR+hQ0LEGLLd7Djb/Ako6hNuJLl43N9zvXjJrkU2oThX8+/cfPW7Tsbd1v37j94+Ki9+fhIZ2XBsc8zmRUnCdMohcK+EUbiSV4gSxOJx8nF+zp//AkLLTLVM7Mc45SdKjERnBlHjTa9p9Tg1NiUTaGCF0B1mY6s2o2q4cECi92wGu7DZ8d2RQXTxUzpFlDJEpQWLyO3bC18dGCCK0aNuBE5BV5C1AU6yQomJSgq1KAXg5ODi+vll6rthj6v6bmZ7W2Lqnu+bihqw/146bcsLBS1YTei1Urxg3hNPHzVGrU7YRDOA9ZB1IAOaeJw1P5DxxkvU1SGS6b1IApzE1tWGMElVi1aaswZv2CnOHBQsRR1bOffV8GWY8bgDuGGMjBnryosS7WepYnbmTJzpldzNfm/3KA0k53YCpWXBhVfFJqUEkwGdS/AWBTIjZw5wHgh3FmBn7GCceM6pn6EaPXK6+DodRC9CcKPbzt7O81zbJBn5Dl5SSLyjuyRD+SQ9An3rPfV++798L/43/yf/q/FVt9rNE/ItfB//wMo9OqY</latexit>

Weights (match quality)

Match variables

Online agents
(compatible pairs)

Standby agents
(incompatible pairs)

All agents

Each online agent matches either with
itself (i=0) or with a standby agent (i>0)

Each standby agent matches with
exactly one other agent

7 / 14

Dual Formulation and the ODASSE Algorithm

min
T∑

t=1

αt +
I∑

i=0

βi

s.t. wt,i − αt − βi ≤ 0,∀t ∈ [T], i ∈ [I]∗

wt+j ,i − βj − βi ≤ 0, ∀i ∈ [I], j ∈ [I]

αt , βi ≥ 0, ∀t ∈ [T], i ∈ [I]

β0 = 0

I αt , βi can be interpreted as estimated values (shadow survival
estimates) of compatible pairs and incompatible pairs
respectively.

I Given optimal β∗i we can derive the online assignment rule
i∗ = argmaxi{wt,i − β∗i } (Online Dual Assignment Using
Shadow Survival Estimates).

8 / 14

Estimating β∗i
I Run many simulations and get β∗i values
I Train a linear model on

I Demographic information of an incompatible pair
I Initial graph state of incompatible pairs (βi value when solving

the dual on just the incompatible pool).
I Predicted vs. true β∗ values.

0 10 20 30
True

0

10

20

30

Pr
ed

ic
te

d

9 / 14

Measuring the Impact

I Including compatible pairs to thicken the exchange with
incompatible pairs

� Increase in the number of matches for incompatible pairs
(quantity)

� Increase in the expected graft survival for compatible pairs
(quality)

10 / 14

Results: Potential Social Impact

Baseline OAES ODASSE Oracle

Matched proportion
of incompatible pairs

54.4% 74.6% 70.6% 76.0%

Expected graft survival
of compatible pairs

9.6 11.1 11.2 11.4

Expected graft survival
of incompatible pairs

10.4 9.8 9.6 10.0

OAES (Online allocation via exhaustive search) solves an IP each time

but only performs the match recommended for the online/impatient

agent.

11 / 14

Results: Fairness (O types)

12 / 14

Results: Algorithms

13 / 14

Directions

I Methodological:
I A model with real weights for weighted matching algorithms to

work on!
I A new hybrid static-dynamic matching model.
I Online primal-dual + learning algorithm

I Practical:
I Embed with the surgical team for weekly intake meetings
I Track waiting times and qualities
I Implement weighted allocation mechanism in a single center?

14 / 14

AAMAS Tutorial - May 13, 2019 1

CASE STUDY: LEARNING TO

MATCH & PACK

BEYOND TRADITIONAL

MATCHING

Matching is a special case of the set packing problem

Variants of online set packing capture:

• Online matching problems (e.g., advertising)

• Scheduling of multi-part tasks on machines

• Forms of the winner determination problem for some combinatorial auctions

• Barter exchanges and organ allocation

Theory is still developing for complex online problems

AAMAS Tutorial - May 13, 2019 2

Can we learn complex, state-dependent matching

and allocation policies in general environments?

Big Memory

Big Compute

Subtask 1: Memory

Subtask 2: Compute

Task

LEARNING TO PACK & MATCH

1. Embed current state space (compatibility/feasibility graph) into fixed-dimensional space

2. Neural network takes vectors as input (use RL to learn appropriate policy)

3. Take an action (e.g., in simplest form, flip a biased coin)

4. If heads: find and match maximum cardinality matching

5. Simulate matching or allocation environment and update the current state

AAMAS Tutorial - May 13, 2019 3

1. EMBEDDING

Need: Embed state (e.g., a graph) as a vector and still maintain certain properties, such

as node neighborhood structure. We use random walks to do so [Li, Campbell, Caceres 2017]

Use random walk on a carefully selected initial distribution to capture temporal

changes in probability distribution

• Encode distance between pairs of probability distributions

• Sanity check: can distinguish between families of random graphs (e.g., Erdős-Rényi

and Stochastic Block Model), and real kidney exchange graphs

AAMAS Tutorial - May 13, 2019 4

2. EMBEDDING TO NEURAL NET

Feed an embedded graph into, e.g., a neural network to output a learned

probability for our biased coin flip

• (Network structure and action space are much more complicated in practice)

AAMAS Tutorial - May 13, 2019 5

3. LEARNING ALGORITHM

Using an adaptation of Asynchronous Advantage Actor-Critic (A3C) method [Mnih

2016]

AAMAS Tutorial - May 13, 2019 6

4. MAKE A (PROBABILISTIC)

MATCHING DECISION

AAMAS Tutorial - May 13, 2019 7

(Simplest possible action

space, for exposition!)

5. CLOSING THE LOOP FOR TRAINING

To train a matching network (as well as the embedding network), we must be able

to simulate realistic environments

• Homogeneous Erdős–Rényi graphs [Akbarpour et al. 2017]

• Heterogeneous Erdős–Rényi graphs [Ashlagi et al. 2013]

• Real/Simulated data from UNOS exchange, taxi, rideshare, etc

AAMAS Tutorial - May 13, 2019 8

EARLY RESULTS

Possible to replicate results from prior theory papers:

• In some models, dynamic matching helps

• In some models, dynamic matching does not help

Still iterating on:

• Neural net structure

• Action space (binary coin flip vs. multiple match types)

• Learning method (A3C vs. DQN vs. more standard methods)

But …

• Seems promising. Can learn matching policies beyond simply batching for T time
periods; can realize gains over greedy.

• Policies depend on graph structure.

AAMAS Tutorial - May 13, 2019 9

CASE STUDY: ONLINE DIVERSE

BIPARTITE MATCHING

AAMAS Tutorial - May 13, 2019 1

INTER-AGENT EFFECTS

(Weighted) matching market literature focuses on maximizing the sum of the utility

of individual matches (subject to constraints).

• Not always the right idea!

Say you are a firm hiring workers: what is your goal?

Maximize the number of open positions filled …

… with “good” candidates …

… subject to fairness constraint(s) …

… and such that the entire hired cohort works well together!

AAMAS Tutorial - May 13, 2019 2

EXTENSION TO THE ONLINE CASE

What if workers do not apply in a single batch?

• E.g., matching workers to tasks in an online labor market

• May have soft constraints (synergies in the workforce)

• May have hard constraints (quota systems)

Another example: Internet advertising

• Reach: the number of individuals

• Frequency: the rate at which you select an individual

• Law of diminishing returns

AAMAS Tutorial - May 13, 2019 3

ONLINE MODEL

Bipartite graph G = (U,V,E)

• Know U entirely offline

• V arrives one by one

T time steps

• At each time step t, sample v independently from known distribution D

• Vertex v must be assigned immediately and irrevocably, or rejected

• (Assume T >> 1, and |V| >> |U|)

Non-negative, monotone, submodular function f over the edges E

• Goal: design an algorithm ALG that finds matching M that maximizes E[f(M)]

AAMAS Tutorial - May 13, 2019 4

DIVERSITY VIA SUBMODULARITY

Ground set of elements [n] := {1, 2, …, n}

Function f is submodular if for every subset of elements A and B:

Function f is monotone if:

AAMAS Tutorial - May 13, 2019 5

TWO-PHASE APPROACH

Separate the algorithms into two phases:

• Offline: obtain an upper bound on the offline optimal solution

• Online: use that to guide the online matching algorithm

Multilinear extension of a submodular function f is

High-level notes:

• F(x) = f(x) on any integral points

• If with elements packed according to distribution x, then

AAMAS Tutorial - May 13, 2019 6

OFFLINE PHASE

Solve the following program:

If f is linear, can solve this exactly

If f is monotone submodular, solve approximately [Calinescu et al. 2011, Adamczyk et al. 2016]

Yields probability distribution x* from which we can sample during online phase

AAMAS Tutorial - May 13, 2019 7

Expected matches for any v is at most

the expected number of arrivals rv

Expected number of matches

for any u is at most 1

ONLINE PHASE: TWO ALGORITHMS

First, solve previous program for x* = (x*e), such that F(x*) > (1 – 1/e) OPT …

Multilinear Maximization Program (MMP-ALG):

• v arrives: sample edge e = (u,v) from its neighbors with probability x*e / rv

• Match if u is safe; else reject

Contention Resolution (CR-ALG):

• Uses techniques from contention resolution (CR) literature [Vondrak et al. 2011]

• Roughly, sample a binary vector Y in the offline phase based on x*

• Match according to Y in the online phase if safe; else reject

AAMAS Tutorial - May 13, 2019 8

COMPETITIVE RATIO

E[numerator]: over internal randomness of algorithm and arrival sequence

E[denominator]: over randomness in arrival sequence

AAMAS Tutorial - May 13, 2019 9

In: An instance of the problem

XALG(In): Random variable to denote weight of matching in ALG

XOPT(In): Random variable to denote weight of matching in OPT

Competitive Ratio = minIn E[XALG(In)] / E[XOPT(In)]

H
ig

h
e

r
is

 b
e

tt
e
r

1

0

THEORETICAL RESULTS

AAMAS Tutorial - May 13, 2019 1
0

CR-ALG achieves an online competitive ratio of at least

½ (1 – e-1/2)(1 – 1/e)

when arrival rates are integral

MMP-ALG achieves an online competitive ratio of at least

(1 – 1/e)2

when |U| = o(√T)

EARLY, EXPLORATORY EXPERIMENTS

Run experiments on two common submodular functions

Budget additive:

• Maximize the sum of weights subject to a budget constraint B

Weighted coverage of a set of elements

Framework:

• Extension to b-matching (only upper bounds) on the fixed U side, varies “constrainedness”

• Benchmark: offline optimal (solve a big, omniscient math program to optimality)

AAMAS Tutorial - May 13, 2019 1
1

EARLY EXPERIMENTS

NEG-CR: small tweak where uniform sampling is replaced

by dependent rounding [Gandhi et al 2006]

Learn semi-matching offline, sample from it online

Greedy: choose an available neighbor that maximizes

marginal gain in f, otherwise drop v

MMP-ALG and CR-ALG from earlier

Early results:

• Budget: much better than Greedy, much better than c-r

• Coverage: Greedy wins for constrained b maybe better

algorithms than MMP-ALG and CR-ALG?

AAMAS Tutorial - May 13, 2019 1
2

