BIPARTITE B-MATCHING

In traditional matching, any vertex can be matched at most once

b-matching: given G = (V,E), and a length-|V| vector **b** of nonnegative integers ...

- Any vertex i can be matched at most b(i) times
- Generalizes traditional matching: b = 1

Bipartite b-matching: given bipartite graph G = (U,V,E) ...

PTIME for maximum cardinality/weight [Kleinschmidt et al. 1995, & earlier]

Further generalization: lower and upper bounds

- Vertex *i* must be matched at least $b_{\underline{i}}(i)$, and at most $b_{\underline{i}}(i)$, times
- NP-hard in many settings, even for existence

DIVERSITY IN MATCHING MARKETS

New goal: provide "good" coverage over different classes of items or agents

DIVERSITY IN MATCHING MARKETS

Maximum weighted matching will treat individual reviewer matchings as independent of the full review set for a paper

DIVERSITY IN MATCHING MARKETS

Maximum diverse weighted matching will balance individual quality with the diversity of opinion in the paper review set

HOW TO DEFINE DIVERSITY?

Given K classes on one side of the market ...

- {AI, HCI, Systems, Theory} paper classes $\rightarrow K = 4$
- ... want marginal gain of same-class matches to decrease.

SOLVING THIS PROBLEM

Basic maximum weight bipartite matching: PTIME

Max weight bipartite b-matching with conflict constraints: NP-hard [Chen et al. '16]

Integer linear program (so, ~solvable)

Our problem: at least as hard 🕾

- Mixed integer quadratic program (so, harder)
- (Also, the program is enormous)

We can show that an obvious PTIME greedy algorithm:

- Guarantees 1 1/e ~ 0.63 of optimality (for some special cases)!
- Open question for the general case.

ENTROPY GAIN & THE PRICE OF DIVERSITY

We use entropy to measure the gain in diversity:

- Entropy is zero if all matches come from the same cluster
- Entropy is maximized if matches are "spread evenly" across clusters
- (Edge weights, aka individual match quality, affects this.)

Entropy gain: relative gain in entropy compared to max weight

Price of diversity: relative loss in efficiency when compared to a maximum weight (aka, efficient) matching

- Want: no price of diversity with high gain in entropy!
- We show that the price of diversity can be very bad in theory ②.

BUT WHAT ABOUT IN PRACTICE?

MovieLens 1M dataset [Harper&Konstan '16]

 One million ratings of movies (we use a standard collaborative recommender system to fill in blanks)

SIGIR and KDD reviewer bidding [Karimzadehgan&Zhai '09, Sugiyama&Kan '10]

Solve to	Solve	
optimality	approximately	

Dataset	PoD	EG	PoD	EG
MovieLens	0.01	1.45	0.01	1.45
SIGIR	0.08	1.63	0.17	1.60
KDD	0.06	4.28	0.07	4.28

INITIAL TAKEAWAY

We can greatly increase the diversity/coverage of a recommended matching at almost no cost to overall efficiency.

(Not in theory, but in practice, and in the **static case** ...)

APPLICATION: HIRING WORKERS

INTRODUCTION

Imagine we're a company hiring a team of workers from a large pool of applicants

Wants:

- High individual worker quality
- Good interplay between workers

Constraints:

- Interviewing budget / cost
- Uncertainty over individual quality

INFORMATION GATHERING

For the sake of this talk, assume we have two ways to gain information:

Resume screenings

In-person interviews

KEY QUESTIONS

How should a company allocate its limited interviewing resources to select the best cohort of new employees from a large set of job applicants?

How should that company allocate cheap but noisy resume screenings and expensive but in-depth in-person interviews?

HIGH-LEVEL APPROACH

Model as a multi-armed bandit (MAB) problem in the **Combinatorial Pure Exploration (CPE) setting**

- Each applicant is represented by an arm
- Uncertainty over true value of that individual arm
- Can "pull" arms at some cost to gain information

Goal: find the optimal cohort maximizing some objective by selectively pulling arms:

- "Pure exploration" pull arms first, and then select cohort
- Only care about how much effort it takes to find "best" cohort

SETTING UP THE MODEL

Might build on recent work due to Chen et al. [2014+]:

- Select a subset of arms with certain combinatorial structure (size-K, matching, etc)
- Looked at fixed confidence and fixed budget settings

A generalization: two ways to gather information about an arm's utility:

- Weak pull, equivalent to a resume screening of a candidate
- Strong pull, equivalent to an interview of a candidate

SWAP: STRONG-WEAK ARM PULL

We present the strong-weak arm pull (SWAP) algorithm, which chooses which arms to pull, and when, based on input from an oracle that maximizes a monotone submodular objective function.

SWAP ALGORITHM

Initialize empirical means
Repeat until confident:

- 1. Am I done?
- 2. Take the symmetric difference between optimistic and pessimistic cohorts
- 3. Choose the most uncertain arm from that subset of arms
- 4. Probabilistically weak/strong pull
- 5. Update estimates and repeat

THEORETICAL RESULTS

Theorem 2. Given any $\delta_1, \delta_2, \delta_3 \in (0,1)$, any decision class $\mathcal{M} \subseteq 2^{[n]}$, and any expected rewards $\mathbf{u} \in \mathbb{R}^n$, assume that the reward distribution φ_a for each arm $a \in [n]$ has mean u(a) with an σ -sub-Gaussian tail. Let $M_* = \arg\max_{M \in \mathcal{M}} w(M)$ denote the optimal set. Set $rad_t(a) = \sigma \sqrt{2\log\left(\frac{4nCost_t^3}{\delta}/T_t(a)\right)}$ for all t > 0 and $a \in [n]$, set $\epsilon_1 = \sigma \sqrt{2\log\left(\frac{1}{2}\delta_2/T\right)}$, and set $\epsilon_2 = \sigma \sqrt{2\log\left(\frac{1}{2}\delta_3/n\right)}$. Then, with probability at least $(1 - \delta_1)(1 - \delta_2)(1 - \delta_3)$, the SWAP algorithm (Algorithm 1) returns the optimal set $Out = M_*$ and

$$T \leq O\left(\frac{\sigma^2 width(\mathcal{M})^2 \mathbf{H} \log \left(nR^2 \left(\bar{X}_{Cost} - \epsilon_1\right)^3 \mathbf{H}/\delta\right)}{\bar{X}_{Gain} - \epsilon_2}\right),$$
where T denotes the \bullet amples used by Algorithm I ,

H is defined in Eq. 3

Overview of theoretical results:

- We extend the results due to Chen et al. to the case of "arm pulls that cost j and give you s"
- We also give results for general probabilistic pulling policies like "strong pull with probability s/j and weak pull with prob. 1 – s/j"
- We give some initial results relating SWAP to other algorithms
- These theoretical results are only for the linear case – monotone submodular is open!

AN ONGOING (SIMULATION-BASED) EXPERIMENT WITH SWAP

Initial motivation: incorporating diversity into real-world hiring processes

Academic real world = graduate admissions

Used actual admissions data from the University of Maryland's Department of Computer Science to run experiments using SWAP to simulate admissions of a diverse cohort of graduate students

(IRB approval, & support of university and department.)

Would be interested in eventually setting up a live experiment, & happy to talk offline!

FORMALLY PROMOTING DIVERSITY WITH SWAP

In our experiments, we define diversity via an adaptation of the submodular function from earlier:

$$f(M) = \sum_{i=1}^{K} \sqrt{\sum_{j \in P_i \cap M} u(a)}$$

Recall: function takes K disjoint* classes as input In our setting:

- Applicant attributes like region or gender
- Applicant interests like AI, ML, HCI, and so on

GRADUATE ADMISSIONS EXPERIMENT SETUP

Trained a classifier on past admissions (2013 – 2015) data to model decisions of the graduate admissions committee

Numerical score in [-2, +2] of quality, and actual admissions decision in {0,1}

Used different text-based and numerical features of applicants:

- Statements of purpose (OCR → word counts, LDA, and so on)
- Letters of recommendation (OCR → word counts, LDA, and so on)
- Academic data (GPA, GRE, ...)
- Demographic data (Gender, region, ...)
- "Standout", "grindstone", "ability", and other word groups from related literature

GRADUATE ADMISSIONS EXPERIMENT SETUP, CONTINUED

Using our classifier, we ran simulations of SWAP diversifying for different sets of attributes

- Gender: {Male, Female}
- Region of Origin: {North America, China, India, Asia-Other, Middle East, Europe, Africa, Other}

Estimates of s and j from a small-scale survey of past committee members Compared SWAP's results with the results of past admissions decisions

- Not a complete proxy for utilitarian matching!
- E.g., if the top K=100 individual applicants are in HCI, it is unlikely that the graduate chair would accept a cohort of only K=100 HCI students

Can compare against a simulated utilitarian matching based on committee scores

CAVEATS

These are not policy recommendations!

Feedback – negative and positive – is welcome and desired!

Issues:

- We are learning from past review scores, which are biased → biased classifier
- Real scores given without additional information gained from Skype interviews → our simulated Skype interviews only give a certain type of "additional information"
- When comparing against reality, may not include soft operational constraints (e.g., ideas of budget, hiring pushes for a particular year, and so on)
- Can we really even measure the "real utility" of a student ...?

GRADUATE ADMISSIONS EXPERIMENT RESULTS

- Large gains in diversity (by design!)
- SWAP spent roughly the same amount of total resources as the admissions committee
- Slight drop in general fit (versus Top-K Utility)

	M/F Ratio
SWAP	1.3:1 (0.02)
Actual	2.9:1

	Gender		Region of Origin	
	$\sqrt{w_{ exttt{TOP}}}$	$w_{\scriptscriptstyle extsf{DIV}}$	$\sqrt{w_{ exttt{TOP}}}$	$w_{ m \scriptscriptstyle DIV}$
SWAP	8.5 (0.03)	12.1 (0.06)	8.0 (0.03)	22.1 (0.03)
Actual	8.6	11.8	8.6	20.47

GRADUATE ADMISSIONS EXPERIMENT RESULTS

→ SWAP-style approaches could serve as a useful decision support tool to promote diversity in practice

	Gender		Region of Origin	
	$\sqrt{w_{ exttt{TOP}}}$	$w_{ m \scriptscriptstyle DIV}$	$\sqrt{w_{ exttt{TOP}}}$	$w_{ m \scriptscriptstyle DIV}$
SWAP	8.5 (0.03)	12.1 (0.06)	8.0 (0.03)	22.1 (0.03)
Actual	8.6	11.8	8.6	20.47

ONGOING WORK

Tiered hiring via structured interviews:

- How do we sub-select through resume → phone → on-site → offers?
 Group fairness: e.g., incorporation of fair treatment (*vis a vis* sensitive attribute) of arms
 What does diversity even mean?
- Picked a fairly arbitrary submodular function human judgment aggregation?

How should we partition? Can we learn a good partitioning?

Detecting bias in application materials \rightarrow incorporate this into automated scoring

