
Decision making under 
uncertainty

• Robust optimization
• Find decisions that work well regardless 𝜃

• Active learning/information gathering
• Acquire more information about 𝜃

• Machine learning
• Use other data sources to estimate 𝜃



Information gathering

• What if we have the ability to collect more data?
• Ask two people if they’re friends

• Test for organ donor compatibility 

• Collecting data is usually expensive

• Want to balance cost vs quality of decision

• Two examples: influence maximization and matching



Influence maximization in the field

• Gathering network data requires in-person surveys, week+ of effort

• Approach: information gathering via network sampling

?

Assumed starting point Real starting point



• Data collection is costly and time consuming
• Digital sources are often inaccurate or missing

• Week+ for social workers to interview 100 or more people

Where does the network come 
from?



• Data collection is costly and time consuming
• Digital sources are often inaccurate or missing

• Week+ for social workers to interview 100 or more people

• Do we really need to gather the entire network?

Where does the network come 
from?
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Objective

• Query cost: how many nodes were surveyed?
• Should grow very slowly with 𝑛

• Influence spread: what is the expected number of nodes reached?

• Comparison to 𝑂𝑃𝑇, best influence spread by algorithm which sees entire 
network

approx. ratio =
𝐸[algorithm′s influence spread]

𝑂𝑃𝑇



Hardness
Theorem: There is a family of graphs on which any algorithm with strictly sublinear 
query cost has approximation ratio tending to 0 as 𝑛 → ∞



Hardness
Theorem: There is a family of graphs on which any algorithm with strictly sublinear 
query cost has approximation ratio tending to 0 as 𝑛 → ∞

log 𝑛



What now?

• Real networks have useful structure

• Here: two examples
• Community structure

• Friendship paradox



Community structure

• Intuition: influence mostly spreads locally, within 
communities

• We’d like to put one seed in each of the largest 𝑘
communities



Community structure

• ARISEN algorithm repeatedly:
• Randomly samples a node

• Explores that node’s neighborhood via a random walk

• Estimates the size of that node’s community

• And then seeds nodes that correspond to largest 𝑘
communities



Community structure

Theorem: For community-structured graphs, ARISEN obtains a 
constant-factor approximation to the optimal influence spread using 
polylog(n) queries. 

Bryan Wilder, Nicole Immorlica, Eric Rice, Milind Tambe. Maximizing influence in an 
unknown social network. AAAI 2018.



Community structure

Theorem: For community-structured graphs, ARISEN obtains a 
constant-factor approximation to the optimal influence spread using 
polylog(n) queries. 

Asymptotically: exponential improvement over exhaustive surveys!

Bryan Wilder, Nicole Immorlica, Eric Rice, Milind Tambe. Maximizing influence in an 
unknown social network. AAAI 2018.



Community structure

• Downside: difficult to implement in some settings

• Homeless youth: can’t find a series of 5-10 youth to simulate a 
random walk



Friendship paradox

• On average, your friends are more popular than you

Degree distribution of a random node Degree distribution of a random neighbor



Friendship paradox

• Repeatedly
• Survey a random node

• Survey one of its neighbors

• First step encourages diversity, second biases towards high-
degree/central nodes



Case study: HIV and 
homelessness

• Shelters conduct educational 
interventions

• Resource constraints: work with 4-6 
youth at a time

• Peer leaders: spread message through 
social network



Recap: HIV and 
homelessness

• Influence maximization is well studied, but new challenges in the field
• How will influence spread across the network?

• How do we get network data in the first place?
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Putting it all together

• Combine these ideas into a single system which works in the field

• Needs to minimize need for data, expertise, resources

• Needs to handle domain-specific challenges
• Homeless youth: peer leaders often don’t attend intervention



Bryan Wilder, Laura Onasch-Vera, Juliana Hudson, Jose Luna, Nicole Wilson, Robin Petering, Darlene 
Woo, Milind Tambe, Eric Rice. End-to-End Influence Maximization in the Field. AAMAS 2018.



Field study

Deployment in collaboration with social work and community partners

268/22/2019 Bryan Wilder (USC)
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• Recruit 60 youth

• Survey social network

• Train 10-12 peer leaders

• Over 3 interventions

• 1 month: follow-up with all 60

• See who received information



Comparison

• Conducted (so far) 4 studies, each with different algorithm

• Status quo: degree centrality (DC)

• AI-based algorithms: CHANGE, HEALER, DOSIM
• CHANGE only surveys ~20% of nodes

• HEALER and DOSIM survey 100%

288/22/2019 Bryan Wilder (USC)



Results: information spread

AI-based algorithms 
dramatically outperform status 
quo (27%  70+%)

CHANGE performs comparable 
to HEALER/DOSIM, but 
surveyed only 18% of youth!

0

50

100

Percent of non peer leaders 
informed

CHANGE HEALER DOSIM DC
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Results: behavior change

0

50

100

Percent of informed nodes who 
started HIV testing

CHANGE HEALER DOSIM DC

Information spread translates 
into real behavior change!

CHANGE: comparable/slightly 
higher conversion rate

308/22/2019 Bryan Wilder (USC)



Summary

• Influence maximization/social network interventions offer promising 
means to amplify interventions

• Doesn’t work out of the box (yet)

• Think carefully about models and data

• Dealing with uncertainty is critical



Decision making under 
uncertainty

• Robust optimization
• Find decisions that work well regardless 𝜃

• Active learning/information gathering
• Acquire more information about 𝜃

• Machine learning
• Use other data sources to estimate 𝜃



Predicting Outcomes: Techniques and Perils

Sanmay Das

Optimization & Learning Approaches to Resource Allocation
for Social Good (Tutorial @ AAMAS 2019)
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Improving Allocations Using Predicted Outcomes

I Idea: Personalized intervention / resource allocation
I If we allocate resource α to agent A, how effective will that be

in terms of the outcome we care about?
I Bed space + counseling resources to a homeless single mother

with two kids, ages 5 and 7? Household with alcoholic veteran
father, mother and two children? (Kube et al, AAAI 2019)

I Kidney of a 250 lb man with 2 HLA-B mismatches into a 150
lb woman of the same blood type ? (Massie et al, Am. J.
Transplantation 2016

I Refugees to specific cities? “Current procedures for
determining how to allocate refugees across domestic
resettlement sites do not fully leverage synergies between
refugees and geographic locations” (Bansak et al, Science
2018)
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Forecasting Outcomes

I Sometimes a standard learning problem
I Refugee assignments to cities can be randomized
I Living donor kidney transplantation has typically always been

carried out as long as recipient and donor are compatible

I However, often available data is based on current allocation
policies

I Creates serious estimation problems
I Need: Causal / counterfactual prediction
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Heterogeneous Treatment Effects

I Rubin’s potential outcomes framework (Rubin, JASA 2005:
Causal effect of treatment for i is Yi (1)− Yi (0).

I But we only observe one of these.

I Usual focus: Estimating average treatment effects across the
population, e.g.

∑n
i=1[Yi (1)−Yi (0)], although recently also a

focus on conditional average treatment effects∑n
i=1[Yi (1)− Yi (0)|Xi ]

I Classic causal inference problem: Observational study.
Outcomes typically not independent of decision to treat.

I Aside: Many clever empirical strategies for dealing with this in
specific cases (RCTs, natural experiments, diff-in-diff,
instrumental variables, and so on)

I Not the typical “big data” setting (often administrative data
without convincing instruments or good natural experiments)
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Ignorability and Matching

I Strong ignorability: Let Z be the treatment, Y the outcome,
X the feature (covariate) vector (other than treatment)

I Unconfoundedness: Y is independent of Z conditional on X
I Common support / overlap: 0 < Pr(Z = 1|X ) < 1
I Note the underlying tension: as we go to more features, we’re

less likely to have confounding, but also less likely to satisfy
common support

I Classic technique: Propensity score matching (Rosenbaum &
Rubin, Biometrika 1983)

I Estimate Pr(Z = 1|X ) (propensity score) using logistic
regression

I Match each treated individual to one or more untreated using
the propensity score

I Checking for propensity score balance and covariate balance,
differences in matched treatments and controls should be
because of the treatment
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Enter the Dragon (ML)

I Basic idea: Estimate the “response surfaces”
E [Y |X ,Z = 0],E [Y |X ,Z = 1].

I Key difference from prior work: Do not explicitly estimate the
propensity to receive treatment.

I Intuition: If ML is really good at prediction, can we just treat
this as a prediction problem?

I We are good at dealing with lots of features (so can maybe
throw all confounders in there).

I Any flexible model for the response surface should work

I We’ll consider BART (Chipman, George, and McCulloch,
NeurIPS 2007, Annals Appl. Stat 2010, Hill J. Comp. Graph.
Stat. 2011) and discuss causal forests (Wager & Athey, JASA
2018)
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Bayesian Additive Regression Trees

I A flexible Bayesian model that easily captures interactions and
nonlinearities (inspired by boosting).

I Sum of trees (Tj ,Mj) where Tj is the tree structure (with
binary splits at each interior node) and Mj is a vector of the
predicted values at the leaves.

I A regularization prior.
I Main effect: encodes preference for short individual trees

(e.g. trees with 1, 2, 3, 4 ≥ 5 terminal nodes receive prior
probability of 0.05, 0.55, 0.28, 0.09, 0.03 respectivel)y.

I Normal priors on each value in Mj (encodes preference towards
0 values)

I A prior on the variance of the error term σ

I Number of trees m is usually pre-set (200 is standard)
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BART Algorithm

I Start by initializing m single node trees
I Gibbs sampler: At each iteration, consider changing one tree.

Need to sample from the posterior
I (Tj ,Mj)|T(j),M(j), σ, data where T(j),M(j) is the ensemble

other than tree j
I Tj sampler is the complex part, but can be done using the

following proposal algorithm based on the current tree:
growing a terminal node (0.25), pruning a pair of terminal
nodes (0.25), changing a nonterminal rule (0.40), and
swapping a rule between parent and child (0.10).

I Caveat: In our experience, if you want reasonable estimates of
the posterior distribution, it is important to thin the draws
from the sampler (50 works for us) to avoid autocorrelation
problems.
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Causal Forests

I Typical decision tree algorithm: Recursive greedy choice of
splitting feature (typically combined with pruning)

I Bagging: Build an ensemble by training m trees on bootstrap
samples of the training data

I Random forests: Decorrelate by only allowing a random
subset of features to be chosen for splitting at each node

I Causal inference intuition: Leaves should be small enough
(and therefore matched enough) that we can think of the
(Yi ,Zi ) pairs as coming from a randomized experiment

I Athey and Wager show you can prove a lot of nice things
about treatment effect estimation if trees are honest.
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Honest Trees

I Honesty: Splitting rule must not inappropriately incorporate
information about outcomes Yi . Formally, in any tree Yi can
only be used to either estimate the treatment effect, or to
decide where to place splits, not both.

I Two methods:

1. Double-sample trees: Randomly subsample the data, divide
into two equal halves, use one to grow the tree and the other
to estimate responses at the leaves.

2. Propensity trees: Randomly subsample the data, use Zi to
place the splits, but Yi to estimate responses at the leaves.

I Note that these are subsampled without replacement, as
opposed to the standard with replacement paradigm in
random forests.
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Example: Treatment Effects of Prevention and Rapid
Rehousing

I Preliminary, unpublished work, with all the cautions inherent
in that!

I Two homelessness interventions: Prevention and RRH were
both introduced as part of the ARRA during the financial crisis

I Prevention is one of the lowest cost interventions: Cash,
network of referrals

I Seems effective, but population receiving the treatment is very
different than others (more likely to have been renting or
owning their own homes in the immediate past; higher
incomes)

I Definitions of what constitutes homelessness (criterion for
treatment) are slippery

I Rapid rehousing: Place to stay and way to pay for it, but
without support (counseling, etc)
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Summary Statistics and Feature Information

Service Type Number Assigned Percent Reentered

Emergency Shelter 2897 56.20
Transitional Housing 1927 40.22

Rapid Rehousing 589 53.48
Homelessness Prevention 2061 24.16

Total 7474 43.03

Type Number Examples

Binary 3 Gender, Spouse Present, HUD Chronic Homeless
Other Categorical 61 Veteran, Disabling Condition, Substance Abuse

Continuous 4 Age, Income, Calls to Hotline, Duration of Wait
Total Features 68
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Treatment Effects
I Only a few hundred in prevention are not immediately coming

from their own homes, and only a few hundred others are.
I Strategies: Use (1) PSM with exact matching on prior

residence, income quartile; (2) BART; (3) Causal forests on
only the group that matches on those two features

I BART estimates of average treatment effects for homelessness
prevention and rapid rehousing
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Comparing Average Treatment Effects Using BART and
PSM

Test BART Treatment Effect PSM Treatment Effect
Average Lower 5% Upper 95% Average Lower 5% Upper 95% Sample Size

Prevention vs All other 8.56 5.68 10.20 12.00 2.28 21.72 400
Rapid Rehousing vs All other -5.02 -7.50 -5.02 -9.28 -15.55 -3.01 970

Prevention vs Emergency Shelter 6.35 3.87 7.72 3.42 -9.47 16.31 234
Prevention vs Transitional Housing 10.10 5.72 13.40 0 -17.20 17.20 134

Prevention vs Rapid Rehousing 11.46 7.65 13.50 12.41 0.60 24.22 274
Emergency Shelter vs Transitional Housing -4.25 -10.31 3.47 -12.34 -16.03 -8.65 2772

Rapid Rehousing vs Emergency Shelter -1.94 -3.56 0.43 -8.40 -16.36 -0.42 596
Rapid Rehousing vs Transitional Housing 1.21 -2.62 4.46 -2.34 -12.85 8.17 342
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The data-decisions pipeline

Many real-world applications of AI involve a common template:

[Horvitz and Mitchell 2010; Horvitz 2010]

1

Observe data Predictions Decisions



2

Data

Predictive model

Predicted travel times

Routing algorithm

Shortest path

Google maps



Formalization

• Objective function 𝑓 𝑥, 𝜃
• 𝑥 ∈ {0, 1}𝑛 is the decision variable

• 𝜃 is an unknown parameter (e.g., true travel times)
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Formalization

• Objective function 𝑓 𝑥, 𝜃
• 𝑥 ∈ {0, 1}𝑛 is the decision variable

• 𝜃 is an unknown parameter (e.g., true travel times)

• Want to solve:

max
𝑥∈𝑋

𝑓 𝑥, 𝜃 , where 𝑋 ⊆ {0, 1}𝑛 is the feasible set

• Challenge: 𝜃 is unknown and must be learned from data!
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Typical two-stage approach

Machine learning models

Goal: maximize accuracy

Local search

Optimization algorithms

Goal: maximize decision quality

6



Challenge

• Maximizing accuracy ≠ maximizing decision quality

• “All models are wrong, some are useful”

• Two-stage training doesn’t align with end goal

7



Example
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This work

Automatically shape the model’s loss by incorporating the 
optimization problem into the training loop

Application: resource allocation for tuberculosis treatment

9



Tuberculosis in India

• 2.8 million cases nationally

• Treatment: 6 months of daily antibiotics 

• Low adherence leads to reinfection and drug-resistant strains

108/22/2019 Bryan Wilder (USC)
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Dataset

• Data shared by 99DOTS on 17,000 patients in Mumbai

• Anonymized call logs + basic demographic features

138/22/2019 Bryan Wilder (USC)



What to do with data?

• Health workers have limited resources

• Text, call, make house visits to at-risk patients

• Goal: prevent missed doses

148/22/2019 Bryan Wilder (USC)



What to do with data?

• Status quo: reactive
• This patient has missed 4 doses; better go check on them

• Ideal: proactive
• This patient is showing warning signs; intervene preemptively 

8/22/2019 Bryan Wilder (USC) 15
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Data

Predictive model

Predicted adherence

Optimization algorithm

Intervention
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Resource allocation problem

• Let 𝜃𝑡
𝑖 =ቊ

1 if patient 𝑖 will miss a dose on day 𝑡
0 otherwise.

• Locations 1…𝐿, patient 𝑖 has location ℓ𝑖

• 𝑥𝑡
𝑗

=ቊ
1 if health worker goes to location 𝑗 on day 𝑡

0 otherwise.

8/22/2019 Bryan Wilder (USC) 17



Resource allocation problem

max
𝑥
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Future 
adherence 
isn’t known!
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Data Predictive model Predicted adherence

Two-stage training

Actual adherence

vs

Update model to make predictions 
closer to actual adherence
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Data Predictive model Predicted delays

Decision-focused learning

Update model to improve chosen 
decision (wrt actual adherence)

Optimization 
algorithm

Intervention
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Approach
• Idea: differentiate optimal solution with respect to θ, train model via 

gradient descent
• Previous work: only convex problems [Rockafellar & Wets ‘09, Gould et al ‘16, Donti et al ’17]

• Challenge: the optimization problem is discrete!

228/22/2019 Bryan Wilder (USC)



Approach
• Idea: differentiate optimal solution with respect to θ, train model via 

gradient descent
• Previous work: only convex problems [Rockafellar & Wets ‘09, Gould et al ‘16, Donti et al ’17]

• Challenge: the optimization problem is discrete!

• Solution: relax to continuous problem, differentiate, round

ContinuousDiscrete

𝑥 = binary decision 𝑥 = fractional decision
F = continuous objective

23

max
𝑥∈𝑋

𝑓 𝑥, 𝜃 max
𝑥∈𝑐𝑜𝑛𝑣(𝑋)

𝐹 𝑥, 𝜃
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Technical challenges

• What makes for a “good” continuous proxy F?

• How to compute 
𝑑𝑥∗

𝑑𝜃
?

• Differentiate the output of the optimization algorithm wrt predictions

248/22/2019 Bryan Wilder (USC)



Differentiating through 
optimization

• Start by assuming that we have a good continuous relaxation

• How to backpropagate through the optimization step?

• For “nice” relaxations (convex programs), draw on known techniques

258/22/2019 Bryan Wilder (USC)



Differentiating through 
optimization

• How to compute 
𝑑𝑥∗

𝑑𝜃
?

• Differentiate the output of the optimization algorithm wrt predictions

• Idea: optimal solution must satisfy KKT conditions

• Differentiate through those equations via implicit function theorem

268/22/2019 Bryan Wilder (USC)



Linear programs

Standard form:
max
𝑥

𝜃𝑇𝑥

𝐴𝑥 ≤ 𝑏

Includes bipartite matching, shortest path, mincut, etc.
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Linear programs

Standard form:
max
𝑥

𝜃𝑇𝑥

𝐴𝑥 ≤ 𝑏

Includes bipartite matching, shortest path, mincut, etc.

Why can’t we just take derivatives using known techniques?

288/22/2019 Bryan Wilder (USC)



Linear programs

29

𝜃 𝜃

𝑥∗
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Linear programs

•
𝑑𝑥∗

𝑑𝜃
doesn’t exist!

• The Hessian ∇𝑥
2 𝑓 𝑥, 𝜃 = 0 is singular

308/22/2019 Bryan Wilder (USC)



Linear programs

• Solution: add a regularizer to smooth things out

max
𝑥

𝜃𝑇𝑥 − 𝛾 𝑥 2
2

𝐴𝑥 ≤ 𝑏

• Now, Hessian is ∇𝑥
2 𝑓 𝑥, 𝜃 = −2𝛾𝐼 ≺ 0
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Linear programs

Theorem: Provided the LP is feasible, 𝑥∗(𝜃) is differentiable almost 
everywhere. Moreover, 𝜃𝑇𝑥∗ ≥ 𝑂𝑃𝑇 − 𝛾 ⋅ diameter 𝑋 .

8/22/2019 Bryan Wilder (USC) 32



Application: tuberculosis

• Data shared by 99DOTS on 17,000 patients in Mumbai

• Train LSTM-based model to forecast adherence

• Three approaches

• Status-quo (rule-based)

• Standard cross-entropy loss (two-stage) 

• Decision-focused

338/22/2019 Bryan Wilder (USC)



Results: tuberculosis 
treatment
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Results: tuberculosis 
treatment

8/22/2019 Bryan Wilder (USC) 35
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Less “accurate” (but +15% successful interventions)!



Conclusion

• Data + optimization can better target TB interventions

• Need integrated approaches
• Separate learning and optimization doesn’t work for complex/noisy problems

• Opportunity to improve care for millions of people

8/22/2019 Bryan Wilder (USC) 36



MATCHING MARKETS & 

ALLOCATION UNDER UNCERTAINTY

In matching problems, prices do not do all – or any – of the work

Agents are paired with other (groups of) agents, transactions, or 

contracts

• Workers to firms

• Children to schools

• Residents to hospitals

• Patients to donors

• Advertisements to viewers

• Riders to rideshare drivers

AAMAS Tutorial - May 13, 2019



UNCERTAINTY

• Does a matched edge truly exist?

• How valuable is a match?

• Will a better match arrive in the future?

AAMAS Tutorial - May 13, 2019
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COMPETITION

Rival matching markets compete over the same agents

• How does this affect global social welfare?

• How to differentiate?

AAMAS Tutorial - May 13, 2019



MATCH CADENCE

How quickly do new edges form?

How frequently does a market clear?

Is clearing centralized or decentralized?

Can agents reenter the market?

AAMAS Tutorial - May 13, 2019
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DECISION MAKING UNDER 

UNCERTAINTY!

AAMAS Tutorial - May 13, 2019



Outline

• Intro & motivation

• Preliminaries & basic techniques

• Formulating objective functions: value judgement aggregation

• Decision making under uncertainty

• Offline allocation techniques & applications

• Online allocation techniques & applications

• Conclusion



Decision making under 
uncertainty



Decision making under 
uncertainty

• We have objective functions

• We have ways to optimize them

• Are we done?



Decision making under 
uncertainty

• No!

• Real world domains usually lack key information

• Need to make decisions that account for uncertainty about the 
objective or constraints



Decision making under 
uncertainty

• Objective function 𝑓 𝑥, 𝜃
• 𝑥 is the decision variable

• 𝜃 is an unknown parameter 

• Want to solve:
max
𝑥∈𝑋

𝑓 𝑥, 𝜃
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Decision making under 
uncertainty

• Robust optimization
• Find decisions that work well regardless 𝜃

• Active learning/information gathering
• Acquire more information about 𝜃

• Machine learning
• Use other data sources to estimate 𝜃
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Robust optimization

• We often don’t know the “true” model

• One approach: robust optimization

• Given candidate objective functions 𝑓𝜃 induced by different 
parameters, solve

max
𝑥∈𝑋

min
𝜃∈Θ

𝑓𝜃(𝑥)

• Θ is the uncertainty set 



Robust optimization

• In convex optimization: pretty “easy”
• Maximum of convex functions remains convex

• Lots of well-developed techniques

• Combinatorial problems: often become fundamentally harder
• Approximable problems become inapproximable



Robust submodular 
optimization

• Focus on this particular class of problems

• Recall: submodularity = set functions with diminishing returns

• Application: influence maximization



Influence maximization in the field

Lots of previous work on influence maximization…
[Kempe et al 2003, Chen et al 2011, Tang et al 2014…]

But assumes model of influence spread is known exactly!
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Robust optimization

• Given candidate objective functions 𝑓1…𝑓𝑚 induced by different 
models, solve

max
S ≤𝑘

min
𝑖=1…𝑚

𝑓𝑖(𝑆)
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Hardness result

Theorem [Krause et al 2008]: finding an 𝛼-approximation for any 𝛼 > 0
for robust submodular maximization is NP-hard

[He and Kempe 2016]: This also holds specifically for influence 
maximization.



Solution concepts

• Bicriteria guarantee: Our algorithm can pick more than 𝑘 nodes, but is 
only compared to OPT for 𝑘

• Mixed strategy: Instead of picking a single seed set, our algorithm 
picks a distribution over seed sets (randomized strategy, zero-sum 
game)



Solution methods

• Bicriteria guarantees: SATURATE algorithm

• Give increased budget 𝛼𝑘 (𝛼 > 1)

• Binary search on the optimal objective value
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Solution methods

• Bicriteria guarantees: SATURATE algorithm

• Give increased budget 𝛼𝑘 (𝛼 > 1)

• Binary search on the optimal objective value

• For current guess 𝑐: greedily add nodes until 𝑓𝑖 𝑆 ≥ 𝑐 ∀𝑖

• If achievable with 𝛼𝑘 nodes, try higher 𝑐. Else, try lower

Theorem [Krause et al 2008]: Using a budget of 𝑘 log𝑚, SATURATE
matches the optimal objective value with budget 𝑘.



Target influence = 20
Budget = 5
Greedily maximize: σ𝑖min(𝑓𝑖 𝑆 , 20)

𝑓1 𝑓2 𝑓3 𝑓4

0 0 0 0



𝑓1 𝑓2 𝑓3 𝑓4

5 7 2 10

Target influence = 20
Budget = 5
Greedily maximize: σ𝑖min(𝑓𝑖 𝑆 , 20)



𝑓1 𝑓2 𝑓3 𝑓4

8 9 4 15

Target influence = 20
Budget = 5
Greedily maximize: σ𝑖min(𝑓𝑖 𝑆 , 20)



𝑓1 𝑓2 𝑓3 𝑓4

11 10 7 20

Target influence = 20
Budget = 5
Greedily maximize: σ𝑖min(𝑓𝑖 𝑆 , 20)



𝑓1 𝑓2 𝑓3 𝑓4

12 12 9 20

Target influence = 20
Budget = 5
Greedily maximize: σ𝑖min(𝑓𝑖 𝑆 , 20)



𝑓1 𝑓2 𝑓3 𝑓4

15 17 10 20

Target influence = 20
Budget = 5
Greedily maximize: σ𝑖min(𝑓𝑖 𝑆 , 20)



𝑓1 𝑓2 𝑓3 𝑓4

15 17 10 20

Failed with target = 20
Try again with target = 15

Target influence = 20
Budget = 5
Greedily maximize: σ𝑖min(𝑓𝑖 𝑆 , 20)



Example: model uncertainty

• Suppose we’re not sure whether the ICM or the LTM is the right 
model

• SATURATE is a good way to optimize over both



Perturbation Interval ICM

• More complex example
• [He and Kempe 2016, Chen et al 2016]

• Each edge (𝑢, 𝑣) has a propagation probability 𝑝𝑢,𝑣 for the ICM

• 𝑝𝑢,𝑣 is not known exactly: belongs to interval [𝑎𝑢,𝑣, 𝑏𝑢,𝑣]

• Every choice of 𝑝𝑢,𝑣 ∈ 𝑎𝑢,𝑣, 𝑏𝑢,𝑣 ∶ 𝑢, 𝑣 ∈ 𝐸 defines an 

objective function (exponentially many)



Perturbation Interval ICM

• Since the worst-case value is always 𝑝𝑢,𝑣 = 𝑎𝑢,𝑣, normalize by the 
optimal value

• 𝑔𝒑 =
𝑓𝑝(𝑆)

𝑂𝑃𝑇(𝒑)
, solve max

S ≤𝑘
min
𝒑

𝑔𝒑(𝑆)



Perturbation Interval ICM

• Downside: can’t apply SATURATE: exponentially many objectives

• He and Kempe: randomly sample a small set of them, use SATURATE



Scalable algorithms

• Need more powerful tools to deal with complicated uncertainty

• New approach: continuous optimization
• Relax submodular set function to a continuous domain

• Use (stochastic) gradient-based tools to optimize continuous function

• Round back to a discrete set



Multilinear extension
• View set function 𝑓 as defined on the vertices of the hypercube, 0, 1 𝑛

• Want to extend this to the entire hypercube 0,1 𝑛



Multilinear extension
• View set function 𝑓 as defined on the vertices of the hypercube, 0, 1 𝑛

• Want to extend this to the entire hypercube 0,1 𝑛

• Canonical extension: multilinear extension [Calinescu et al 2011]

• Fractional variable 𝑥 ∈ 0,1 𝑛

• View 𝑥 as marginals of a product distribution, 𝐹 𝑥 = E𝑆∼𝑥 𝑓 𝑆

• Equivalently, 𝐹 𝑥 = σ𝑆⊆𝑋𝑓 𝑆 ∏𝑖∈𝑆𝑥𝑖 ∏𝑖∉𝑆1 − 𝑥𝑖



Multilinear extension

• 𝐹 is not concave, no efficient global maximization

• But, it is up-concave
• 𝐹(𝑥 + 𝛿𝑢), 𝑢 ≥ 0 is concave in 𝛿 > 0
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Multilinear extension

• 𝐹 is not concave, no efficient global maximization

• But, it is up-concave
• 𝐹(𝑥 + 𝛿𝑢), 𝑢 ≥ 0 is concave in 𝛿 > 0

• Consequences:

• Any local optimum is a 
1

2
-approximation to the global optimum

• [Chekuri et al 2014, Hassani et al 2017]

• Frank-Wolfe gradient-based algorithm gets a 1 −
1

𝑒
-approximation

• [Calinescu et al 2011, Bian et al 2017]



Multilinear extension

• Need a way to convert a fractional 𝑥 back to a feasible set 𝑆

• There exist rounding algorithms which return a random set 𝑆 with

E 𝑓 𝑆 ≥ 𝐹 𝑥 (lossless rounding)

• Works for general matroid constraints
• Swap rounding, pipage rounding

• See e.g. Calinescu et al 2009; Checkuri, Vondrak, Zenklusen 2009



Advantages of continuous 
approach

• More flexible/powerful
• Robust or risk-averse objectives
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Advantages of continuous 
approach

• More flexible/powerful
• Robust or risk-averse objectives

• Often faster
• Objectives often require random sampling (e.g. ICM)

• Greedy needs many samples

• Stochastic gradient methods can use 1, or small minibatch

• Better approximation guarantee for complex constraints

• For general matroid, continuous gets 1 −
1

𝑒
-approximation vs 

1

2
via greedy



Robust optimization

• Find a good mixed strategy against adversarial objective
• [Krause et al 2010, Chen et al 2007, W 2018, Staib W Jegelka 2018]

• Instead of relaxing budget, guarantee holds only in expectation

• Switch from discrete objectives 𝑓1…𝑓𝑚 to their multilinear extensions 
𝐹1…𝐹𝑚, interpreting the fractional 𝑥 as probability distribution



Solution methods

• Apply gradient-based method to the function 𝐺 𝑥 = min𝐹𝑖(𝑥)

• Get a (super)gradient of 𝐺 by solving the inner adversarial problem to 
find the minimizing 𝐹𝑖



Solution methods

• Apply gradient-based method to the function 𝐺 𝑥 = min𝐹𝑖(𝑥)

• Get a (super)gradient of 𝐺 by solving the inner adversarial problem to 
find the minimizing 𝐹𝑖

Theorem: This gives a 1 −
1

𝑒
-approximation to the optimal mixed 

strategy

Bryan Wilder. Equilibrium computation and robust optimization in zero sum games with 
submodular structure. AAAI 2018.
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Continuous optimization
0 0

0 1

1 0

0.1 0.2

𝛻𝐹1

𝛻𝐹2

𝛻𝐹3

𝛻𝐹4

Adversary oracle: current 
lowest value is 𝐹2



Pros and cons

• Discrete methods (SATURATE):
• Pro: Good bicriteria performance (log𝑚 is usually overly pessimistic) 

• Con: slow, and only tractable when 𝑚 (# objectives) is small

• Continuous methods:
• Pro: fast, and works for any 𝑚 so long as you can solve adversary’s problem

• Con: weaker guarantee for the actual action that’s sampled

• Workaround: can often translate a mixed strategy into a (somewhat worse) 
bicriteria guarantee; see [Chen et al 2017, Anari et al 2018]



PRE-MATCH EDGE TESTING

Idea: perform a small amount of costly testing before a match run to test for 

(non)existence of edges

E.g., more extensive medical testing, donor interviews, surgeon interviews, …

Cast as a stochastic matching problem:

AAMAS Tutorial - May 13, 2019

Given a graph G(V,E), choose subset of edges S such that:

|M(S)| ≥ (1-ε) |M(E)| 

Need: “sparse” S, where every vertex has O(1) incident tested edges



GENERAL THEORETICAL 

RESULTS

AAMAS Tutorial - May 13, 2019

Stochastic matching: 

(1-ε) approximation with Oε(1) queries per vertex, in Oε(1) rounds

Stochastic k-set packing: 

(2/k – ε) approximation with Oε(1) queries per vertex, in Oε(1) rounds

Adaptive: select one edge per vertex per round, test, repeat

Non-adaptive: select O(1) edges per vertex, test all at once

Stochastic matching: 

(0.5-ε) approximation with Oε(1) queries per vertex, in 1 round

Stochastic k-set packing: 

(2/k – ε)2 approximation with Oε(1) queries per vertex, in 1 round
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ADAPTIVE ALGORITHM

AAMAS Tutorial - May 13, 2019

r Base graph Matching picked Result of queries

1:

2:

Input Graph

For R rounds, do:

1. Pick a max-cardinality matching M in graph G, 

minus already-queried edges that do not exist

2. Query all edges in M



INTUITION FOR ADAPTIVE 

ALGORITHM

If at any round r, the best solution on edges queried so far is small relative to 

omniscient …

• ... then current structure admits large number of unqueried, disjoint augmenting 

structures

• For k=2, aka normal matching, simply augmenting paths

Augmenting structures might not exist, but can query in parallel in a single round

• Structures are constant size  exist with constant probability

• Structures are disjoint  queries are independent

•  Close a constant gap per round

AAMAS Tutorial - May 13, 2019



UNOS DATA

AAMAS Tutorial - May 13, 2019
Even 1 or 2 extra tests would result in a huge lift

At p=0.5, one edge test 

per vertex  +21% OPT


