# Formulating Optimization Objectives: Cardinal Utility Models

Sanmay Das

Optimization & Learning Approaches to Resource Allocation for Social Good

# Defining Objectives: Background

- ► There's a whole field (welfare economics) that studies how to use microeconomics to analyze well-being at the aggregate level
- The concerns have tended to be more global (policy impacts, taxation, etc)
- We're largely concerned here with allocation by local institutions
- Market designers often think about these issues
  - Typically with ordinal preferences
  - ▶ Residency match (Roth, J. Pol. Econ. 1984), labor market matching more generally (Roth and Xing, AER, 1994), and public school choice (Abdulkadiroglu et al, AER 2005) are good examples
  - Different evaluation criteria, e.g. stability, truthfulness, percentage receiving first choice, effects on naive and sophisticated players, etc.
  - Avoids interpersonal utility comparisons

# Defining Objectives: Cardinal Utilities

- ▶ In many cases we care about levels of outcomes, not just ranked preferences (Anshelevich and Das, *SIGecom Exchanges 2010*). Examples:
  - ► Homelessness: Percentage stably housed *n* years after exit from homeless services, cost to relevant social service systems (medical, criminal justice, etc), life outcomes of children (Kube, Das, and Fowler, *AAAI 2019*, Azizi et al, *CPAIOR 2018*)
  - Social services more generally: Kids going to college, lifetime incomes, etc. (Katz et al, QJE 2001, Chetty et al, QJE 2011).
  - Organ donation: Quality-Adjusted Life Years (QALY) (Zenios, Man. Sci. 2002), expected graft survival time (Li et al, EC 2019), waiting time until transplant, cost
  - ▶ Pair programming: Productivity (Dawande et al, *Man. Sci. 2008*)

#### Other Use Cases For Cardinal Utilities

- Individuals involved in allocation or matching problems need to reason about levels for decision-making
- ► Fundamentally, assess  $Pr(A)V(A) \stackrel{\geq}{=} Pr(B)V(B)$ 
  - ▶ In the Boston Mechanism for School Choice, should I rank my second-most preferred school higher than my most preferred? (Ergin and Sönmez, J. Pub. Econ 2006)
- Sometimes there's an explore-exploit tradeoff:
  - Should I ask Stan out on a date, or Mike? (Das and Kamenica, IJCAI 2005
  - Should we invite John for a faculty interview, or Bryan? (Das and Li, WINE 2014; cf. Lee and Schwartz RAND J. Econ 2017)

# Defining Objectives: Social Welfare

- ► Intrinsically normative question. Commonly proposed answers for modeling:
  - ▶ Utilitarian: Additive over all agents
  - Rawlsian: Max-Min
  - Nash Bargaining: Multiplicative
- Could also do constrained optimization: e.g. utilitarian subject to some fairness constraints
- ▶ Useful to examine case studies on how to frame the objectives and the optimization.

# Defining Objectives: Social Welfare

- Intrinsically normative question. Commonly proposed answers for modeling:
  - ▶ Utilitarian: Additive over all agents
  - Rawlsian: Max-Min
  - Nash Bargaining: Multiplicative
- Could also do constrained optimization: e.g. utilitarian subject to some fairness constraints
- ▶ Useful to examine case studies on how to frame the objectives and the optimization.

# Defining Objectives: Social Welfare

- Intrinsically normative question. Commonly proposed answers for modeling:
  - Utilitarian: Additive over all agents
  - Rawlsian: Max-Min
  - Nash Bargaining: Multiplicative
- Could also do constrained optimization: e.g. utilitarian subject to some fairness constraints
- Useful to examine case studies on how to frame the objectives and the optimization.

#### Case Study #1: Homelessness in the US

- Endemic and costly public health threat.
- ► One night in January 2014: > 1/2 million Americans experiencing homelessness
  - Majority in emergency shelters or temporary accommodations
- Very costly (>\$4000 / month per individual between health care, criminal justice and homeless services)
- ▶ Homelessness is often a "base" problem hard to deliver other services (mental health, etc) effectively to homeless population

## The Homeless System

- Largely funded by HUD
- Network of local agencies
  - ▶ In 2014: 23,587 agencies across 416 communities
- Federally required universal elements plus local discretion in service delivery
- Running emergency shelters, providing access to short- and long-term housing support

#### Homelessness Services



# How Do We Assess Efficacy?

- ► HUD: Are households *safely and stably housed* some time after leaving homeless services?
- Many other criteria: Contacts with Medicaid, Child Protective Services, Criminal Justice system?
  - Danger of criminalizing poverty (Eubanks, 2018)
  - Use of public services is recorded, and becomes available for algorithmic analyses, while those with money can pay for private services
- Expected re-entries: Measure probability of re-entry within two years of exit for each household (Kube, Das, and Fowler AAAI 2019)

# **Optimal Allocation**

#### Optimization Problem

$$\min_{x_{ij}} \sum_{i} \sum_{j} p_{ij} x_{ij}$$
 subject to  $\sum_{j} x_{ij} = 1 \quad orall i$   $\sum_{i} x_{ij} \leq C_{j} \quad orall j$ 

- x<sub>ij</sub>: whether or not household i is placed in intervention j
- p<sub>ij</sub>: probability of household i reentering if they are placed in intervention j
- $ightharpoonup C_j$ : capacity of intervention j

#### Fairness Constraints

- Allocations may be because of policy constraints
  - ▶ E.g. require prioritization of those fleeing domestic abuse
- We can require the allocation to not hurt anyone more than a small percentage in expectation
- Add a constraint

$$\sum_{j} p_{ij} x_{ij} \leq \sum_{j} p_{ij} y_{ij} + 0.05 \,\forall i$$

y<sub>ij</sub> represents whether or not household i was originally placed in intervention j

# Case Study #2: Living Donor Kidney Transplantation

- ► About 100,000 people waiting for kidney transplants in the US (2016)
- ▶ About, 19,500 kidney transplants in recent years,  $\sim$  5500 from living donors
- Unfortunately, willing living donors are often not medically compatible.
- One option for them is to enter a kidney exchange program (Roth, Sönmez, and Ünver, QJE 2004, Abraham, Blum, and Sandholm, EC 2007, Dickerson et al EC 2016)

# Kidney Exchange



# Kidney Exchange



## Kidney Exchange: Optimization Objectives

- Usually algorithms try to maximize the number of transplants .
- Sometimes this is done on a weighted graph that takes into account different things (like probability of failure), and requires weighted matching algorithms (e.g. Dickerson, Procaccia, and Sandholm, AAAI 2012)
- However, doesn't actually take into account quality of each proposed transplant
  - Conventional wisdom: Any living donor transplant is better than any cadaveric transplant, so they're all definitely good enough.

## Measuring Match Quality

LKDPI introduced by Massie et al (Am. J. Transplantation, 2016)



# Single Center Analysis

- ▶ De-identified data from 2014 2016 (Li et al, EC 2019)
  - All donor and recipient characteristics for calculating LKDPI



#### From LKDPI to Graft Survival

► Expected graft survival: estimated as a function of LKDPI 14.78*e*<sup>-0.01239LKDPI</sup>



# Heterogeneity of Match Quality





|                  | LKDPI    | LKDPI    | LKDPI   |
|------------------|----------|----------|---------|
|                  | original | 2&3 swap | Optimal |
| Original dataset | 37.15    | 25.50    | 22.46   |

|                              | LKDPI    | LKDPI    | LKDPI   |
|------------------------------|----------|----------|---------|
|                              | original | 2&3 swap | Optimal |
| Original<br>dataset          | 37.15    | 25.50    | 22.46   |
| Sample from the whole matrix | 40.51    | 2.67     | -2.5    |

|                    | LKDPI    | LKDPI    | LKDPI   |
|--------------------|----------|----------|---------|
|                    | original | 2&3 swap | Optimal |
| Original           | 37.15    | 25.50    | 22.46   |
| dataset            | 37.13    | 25.50    | 22.40   |
| Sample from        | 40.51    | 2.67     | -2.5    |
| the whole matrix   | 40.31    | 2.07     | -2.5    |
| Shuffle all donors | 40.92    | 4.11     | -0.47   |
| per recipient      | 40.92    | 4.11     | -0.41   |

|                        | LKDPI    | LKDPI    | LKDPI   |
|------------------------|----------|----------|---------|
|                        | original | 2&3 swap | Optimal |
| Original               | 37.15    | 25.50    | 22.46   |
| dataset                | 37.13    | 23.30    | 22.10   |
| Sample from            | 40.51    | 2.67     | -2.5    |
| the whole matrix       | +0.51    | 2.01     | -2.5    |
| Shuffle all donors     | 40.92    | 4.11     | -0.47   |
| per recipient          | 40.92    | 4.11     | -0.41   |
| Shuffle all recipients | 40.70    | 20.6     | 15.49   |
| per donor              | +0.70    | 20.0     | 13.49   |

|                                  | LKDPI    | LKDPI    | LKDPI   |
|----------------------------------|----------|----------|---------|
|                                  | original | 2&3 swap | Optimal |
| Original<br>dataset              | 37.15    | 25.50    | 22.46   |
| Sample from the whole matrix     | 40.51    | 2.67     | -2.5    |
| Shuffle all donors per recipient | 40.92    | 4.11     | -0.47   |
| Shuffle all recipients per donor | 40.70    | 20.6     | 15.49   |

**Takeaway:** Largely donor driven, but with some pairwise idiosyncracies

# Incorporating Match Quality in Optimization

- ▶ We've built a simulator that we will release to generate
- ► Can be incorporated in many different kinds of optimization (static, dynamic, hybrid, different optimization goals)
- Will talk more about one model later in this tutorial