
PRELIMINARIES & 

TECHNIQUES

DAS, DICKERSON, & WILDER



WHAT’S USED IN MARKET DESIGN 

& RESOURCE ALLOCATION?

We want the best outcome from a set of outcomes.

Convex optimization:

• Linear programming

• Quadratic programming

Nonconvex optimization:

• (Mixed) integer linear programming

• (Mixed) integer quadratic programming

Incomplete heuristic & greedy methods

Care about maximization (social welfare, profit), minimization
(regret, loss), or simple feasibility (does a stable matching with 
couples exist?)
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It’s just an optimization problem.

Blame this guy:

• George Dantzig (Maryland alumnus!)

• Focused on solving US military logistic

scheduling problems aka programs

Solving (un)constrained optimization problems is much 

older:

• Newton (e.g., Newton’s method for roots)

• Gauss (e.g., Gauss-Newton’s non-linear regression)

• Lagrange (e.g., Lagrange multipliers)

“PROGRAMMING?”

3



GENERAL MODEL

General math program:

min/max  f(x)

subject to  gi(x)  0,     i = 1, ..., m

hj(x) = 0,    j = 1, ..., k

x  X  n

f, gi, hj : n
 

Linear programming: all of f, gi, hj are linear (affine) functions

Nonlinear programming: at least part of f, gi, hj is nonlinear

Integer programming: Feasible region constrained to integers

Convex, quadratic, etc …
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CONVEX FUNCTIONS

“A function is convex if the line segment between any 
two points on its graph lies above it.”

Formally, given function f and two points x, y:

Convex or non-convex?

•

•

•

•

•

•
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CONVEX SETS

“A set is convex if, for every pair of points within the 

set, every point on the straight line segment that joins 

them is in the set.”

Formally, give a set S and two points x, y in S:

Convex or non-convex sets?

•

•

•

•
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SO WHAT?

An optimization (minimization) problem with a convex 

objective function and a convex feasible region is solved via 

convex programming.

Lets us use tools from convex analysis

• Local minima are global minima

• The set of global mimina is convex

• There is a unique global minimum if strictly convex

Lets us make statements like gradient descent

converges to a global minimum (under some

assumptions w.r.t local Lipschitz and step size)

But let’s start even simpler …
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LINEAR PROGRAMS

An “LP” is an optimization problem with a linear objective 

function and linear constraints.

• A line drawn between any two points x, y on a line is on 

the line  clearly convex

• Feasible region aka polytope also convex

General LP:

min/max  cTx

subject to  Ax  b

x ≥ 0

Where c, A, b are known, and we are solving for x.
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LP: EXAMPLE

We make reproductions of two paintings:

Painting 1 sells for $30, painting 2 sells for $20

Painting 1 requires 4 units of blue, 1 green, 1 red

Painting 2 requires 2 blue, 2 green, 1 red

We have 16 units blue, 8 green, 5 red

maximize 3x + 2y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

VC

9
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SOLVING THE LINEAR 

PROGRAM GRAPHICALLY

maximize 3x + 2y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

2

0

4

6

8

2 4 6 8

optimal solution: 

x=3, y=2

VC
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LP EXAMPLE: SOLVING 

FOR 2-P ZERO-SUM NASH

Recall:

• Mixed Nash Equilibrium always exists

• Even if I know your strategy, in equilibrium I don’t deviate

Given a payoff matrix A:

If Row announces strategy <x1, x2>, then Col gets expected payoffs:

E[“Morality”] = -3x1 + 2x2

E[“Tax-Cuts”] = 1x1 – 1x2

So Col will best respond with max(-3x1 + 2x2, 1x1 – 1x2) …

1
1

Morality Tax-Cuts

Economy +3, -3 -1, +1

Society -2, +2 +1, -1

[Example from Daskalakis]



LP EXAMPLE: SOLVING 

FOR 2-P ZERO-SUM NASH

But if Col gets max(-3x1 + 2x2, 1x1 – 1x2), 

then Row gets -max(-3x1 + 2x2, 1x1 – 1x2) = min(…)

So, if Row must announce, she will choose the strategy:

<x1, x2> = arg max min(3x1 - 2x2, -1x1 + 1x2)

This is just an LP:

maximize z

such that 3x1 - 2x2 > z

-1x1 + 1x2 > z

x1 + x2 = 1

x1, x2 > 0

So Row player is guaranteed to get at least z

1
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LP EXAMPLE: SOLVING 

FOR 2-P ZERO-SUM NASH

Can set up the same LP for the Col player, to get general LPs:

max zR min zC

s.t. (xA)j > zR for all j s.t. (Ay)i < zC for all i

Σi xi = 1 Σj yj = 1

x > 0 y > 0

Know:

• Row gets at least zR, and exactly zR if Col plays equilibrium response to 
announced strategy (has no incentive to deviate, loses exactly zR = z*)

• Col gets at most zC, and exactly zC if Row plays equilibrium response to 
announced strategy (has no incentive to deviate, gains exactly zC = z*)

So these form an equilibrium: zR = z* = zC, since:

• Row cannot increase gain due to Col being guaranteed max loss zC

• Col cannot decrease loss due to Row being guaranteed min gain zR
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LP EXAMPLE: CORRELATED 

EQUILIBRIA FOR N PLAYERS

Recall:

• A correlated equilibrium is a distribution over pure-strategy profiles so that 
every player wants to follow the recommendation of the arbitrator

Variables are now ps where s is a profile of pure strategies

• Can enumerate!  E.g., p{Row=Dodge, Col=Straight} = 0.3

maximize whatever you like (e.g., social welfare)

subject to 

• for any i, si, si’, Σs-i
p(si, s-i) 

ui(si, s-i) ≥ Σs-i
p(si, s-i) 

ui(si’, s-i) 

• Σs ps = 1

(Minor aside: this has #variables exponential in the input; the dual just has 
#constraints exponential, though, so ellipsoid solves in PTIME.)
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QUADRATIC 

PROGRAMMING

A “QP” is an optimization problem with a quadratic objective 

function and linear constraints.

• Quadratic functions  convex (“looks like a cup”)

• Feasibility polytope also convex

Can also have quadratically-constrained QPs, etc

General objective: min/max  xQx + cTx

Sometimes these problems are easy to solve:

• If Q is positive definite, solvable in polynomial time

Sometimes they’re not:

• If Q is in indefinite, the problem is non-convex and NP-hard

1
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SO, WHAT IF WE’RE 

NOT CONVEX?

Global optimization problems deal with (un)constrained 

optimization of functions with many local optima:

• Solve to optimality?

• Try hard to find a good local optimum?

Every (non-trivial) discrete problem is non-convex:

• (Try to draw a line between two points in the feasible space.)

Combinatorial optimization: an optimization problem where 

at least some of the variables are discrete

• Still called “linear” if constraints are linear functions of the 

discrete variables, “quadratic,” etc …

1
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MODIFIED LP FROM 

EARLIER …

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

Optimal solution: x = 2.5, y = 2.5

Solution value: 7.5 + 5 = 12.5

Partial paintings ...?

VC
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INTEGER (LINEAR) 

PROGRAM

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0, integer

y ≥ 0, integer
2

0

4

6

8

2 4 6 8

optimal LP 

solution: x=2.5, 

y=2.5 

(objective 12.5)

optimal IP 

solution: x=2, 

y=3 

(objective 12)

VC
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MIXED INTEGER 

(LINEAR) PROGRAM

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0, integer
2

0

4

6

8

2 4 6 8

optimal LP 

solution: x=2.5, 

y=2.5 

(objective 12.5)

optimal IP 

solution: x=2, 

y=3 

(objective 12)

optimal MIP 

solution: x=2.75, 

y=2 

(objective 12.25)

VC
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COMPLEXITY

Linear programs can be solved in polynomial time

• If we can represent a problem as a compact LP, we can 

solve that problem in polynomial time

• 2-player zero-sum Nash equilibrium computation

General (mixed) integer programs are NP-hard to solve

• General Nash equilibrium computation

• Computation of (most) Stackelberg problems

• Many general allocation problems

2
0

[Thanks Zico Kolter]



LP RELAXATION, B&B

Given an IP, the LP relaxation of that IP is the same program with 
any integrality constraints removed.

• In a maximization problem, LP OPT > IP OPT.  Why?

• So, we can use this as a PTIME upper bound during search

Branch and bound (for maximization of binary IPs):

• Start with no variable assignments at the root of a tree

• Split the search space in two by branching on a variable.  
First, set it to 0, see how that affects the objective:

• If upper bound (LPR) of branch is worse than incumbent best 
solution, prune this branch and backtrack (aka set var to 1)

• Otherwise, possibly continue branching until all variables are 
set, or until all subtrees are pruned, or until LP = IP

Tighter LP relaxations  aggressive pruning  smaller trees

2
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CUTTING PLANES

“Trimming down” the LP polytope – while maintaining all 

feasible IP points – results in tighter bounds:

• Extra linear constraints, called cuts, are valid to add if they 

remove no integral points

Lots of cuts!  Which should we add?

Can cuts be computed quickly?

• Some families of cuts can be generated quickly

• Often just generate and test separability

Sparse coefficients?

2
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CUTTING PLANE 

METHOD

𝑃 = {𝑥 ∈ 𝑅𝑛: 𝐴𝑥 ≤ 𝑏}

𝑃 𝑃𝐼

𝑐
𝑥0

𝑥1

𝑃𝐼 = conv−hull 𝑃 ∩ 𝑍𝑛

𝑥2

𝑥3

𝑥𝑜𝑝𝑡

𝑥4

KC

2
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CUTTING PLANE METHOD

Starting LP. Start with the LP relaxation of the given IP to 

obtain basic optimal solution x

Repeat until x is integral:

• Add Cuts. Find a linear inequality that is valid for the convex 

hull of integer solutions but violated by x and add it to the LP

• Re-solve LP. Obtain basic optimal solution x

Can integrate into branch and bound (“branch and cut”) –

cuts will tighten the LP relaxation at the root or in the tree.

2
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PRACTICAL STUFF

{CPLEX, Gurobi, SCIP, COIN-OR}:

• Variety of problems: LPs, MIPs, QPs, QCPs, CSPs, …

• CPLEX and Gurobi are for-profit, but will give free, complete copies for 
academic use (look up “Academic Initiative”)

• SCIP is free for non-commercial use, COIN-OR project is free-free

• Bindings for most of the languages you’d use

cvxopt:

• Fairly general convex optimization problem solver

• Lots of reasonable bindings (e.g., http://www.cvxpy.org/)

{Matlab, Mathematica, Octave}:

• Built in LP solvers, toolkits for pretty much everything else

• If you can hook into a specialized toolkit from here (CPLEX, cvxopt), do it

Bonmin:

• If your problem looks truly crazy – very nonlinear, but with some 
differentiability – look at global solvers like Bonmin

2
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RUNNING EXAMPLE: METHODS FOR 

OPTIMIZING KIDNEY EXCHANGE

2
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RECALL!

2
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BASIC APPROACH #1:

THE EDGE FORMULATION

Binary variable xij for each edge from i to j

Maximize

u(M) = Σ wij xij

Subject to

Σj xij = Σj xji for each vertex i

Σj xij ≤ 1 for each vertex i

Σ1≤k≤L xi(k)i(k+1) ≤ L-1 for paths i(1)…i(L+1)

(no path of length L that doesn’t end where it started – cycle cap)

2
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GENERATING CUTS FOR THE 

EDGE FORMULATION

A

A

A

V

If: flow into v from a chain

Then: at least as much flow

across cuts from {A}

C1

C2

C3

…

Ck

2
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Binary variable xc for each feasible cycle or chain c

Maximize

u(M) = Σ wc xc

Subject to

Σc : i in c xc ≤ 1 for each vertex i

BASIC APPROACH #2:

THE CYCLE FORMULATION

3
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A HYBRID MODEL I

In practice, cycle cap L is small and chain cap K is large

Old idea: enumerate all cycles but not all chains

• (Slide 30) required O(|V|K) constraints in the worst case

• Can reduce to O(K|V|) = O(|V|2) constraints 

Track not just if an edge is used in a chain, but 

where in a chain an edge is used.

M

A

I

N

I

D

E

A

For edge (i,j) in graph: K’(i,j) = {1} if i is an altruist

K’(i,j) = {2, …, K} if i is a pair

3
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A HYBRID MODEL II

Maximize

u(M) = Σij in E Σk in K’(i,j) wij yijk + Σc in C wc zc

Subject to

Σij in E Σk in K’(i,j) yijk + Σc : i in c zc ≤ 1 for every i in Pairs

Each pair can be in at most one chain or cycle

Σij in E yij1 ≤ 1 for every i in Altruists

Each altruist can trigger at most one chain via outgoing edge at position 1

Σj:ij in E yijk+1 - Σj:ji in E ⌃ k in K’(j,i) yjik ≤ 0 for every i in Pairs

and k in {1, …, K-1}

Each pair can be have an outgoing edge at position k+1 in a chain iff it 

has an incoming edge at position k in a chain

3
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PRELIMINARIES & 

TECHNIQUES

DAS, DICKERSON, & WILDER



WHAT’S USED IN MARKET DESIGN 

& RESOURCE ALLOCATION?

We want the best outcome from a set of outcomes.

Convex optimization:

• Linear programming

• Quadratic programming

Nonconvex optimization:

• (Mixed) integer linear programming

• (Mixed) integer quadratic programming

Incomplete heuristic & greedy methods

Care about maximization (social welfare, profit), minimization
(regret, loss), or simple feasibility (does a stable matching with 
couples exist?)

AAMAS Tutorial - May 13, 2019



It’s just an optimization problem.

Blame this guy:

• George Dantzig (Maryland alumnus!)

• Focused on solving US military logistic

scheduling problems aka programs

Solving (un)constrained optimization problems is much 

older:

• Newton (e.g., Newton’s method for roots)

• Gauss (e.g., Gauss-Newton’s non-linear regression)

• Lagrange (e.g., Lagrange multipliers)

“PROGRAMMING?”

AAMAS Tutorial - May 13, 2019



GENERAL MODEL

General math program:

min/max  f(x)

subject to  gi(x)  0,     i = 1, ..., m

hj(x) = 0,    j = 1, ..., k

x  X  n

f, gi, hj : n
 

Linear programming: all of f, gi, hj are linear (affine) functions

Nonlinear programming: at least part of f, gi, hj is nonlinear

Integer programming: Feasible region constrained to integers

Convex, quadratic, etc …
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CONVEX FUNCTIONS

“A function is convex if the line segment between any 
two points on its graph lies above it.”

Formally, given function f and two points x, y:

Convex or non-convex?

•

•

•

•

•

•

AAMAS Tutorial - May 13, 2019



CONVEX SETS

“A set is convex if, for every pair of points within the 

set, every point on the straight line segment that joins 

them is in the set.”

Formally, give a set S and two points x, y in S:

Convex or non-convex sets?

•

•

•

•

AAMAS Tutorial - May 13, 2019



SO WHAT?

An optimization (minimization) problem with a convex 

objective function and a convex feasible region is solved via 

convex programming.

Lets us use tools from convex analysis

• Local minima are global minima

• The set of global mimina is convex

• There is a unique global minimum if strictly convex

Lets us make statements like gradient descent

converges to a global minimum (under some

assumptions w.r.t local Lipschitz and step size)

But let’s start even simpler …

AAMAS Tutorial - May 13, 2019



LINEAR PROGRAMS

An “LP” is an optimization problem with a linear objective 

function and linear constraints.

• A line drawn between any two points x, y on a line is on 

the line  clearly convex

• Feasible region aka polytope also convex

General LP:

min/max  cTx

subject to  Ax  b

x ≥ 0

Where c, A, b are known, and we are solving for x.

AAMAS Tutorial - May 13, 2019



LP: EXAMPLE

We make reproductions of two paintings:

Painting 1 sells for $30, painting 2 sells for $20

Painting 1 requires 4 units of blue, 1 green, 1 red

Painting 2 requires 2 blue, 2 green, 1 red

We have 16 units blue, 8 green, 5 red

maximize 3x + 2y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

VC

Objective ??????? Constraints ???????
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SOLVING THE LINEAR 

PROGRAM GRAPHICALLY

maximize 3x + 2y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

2

0

4

6

8

2 4 6 8

optimal solution: 

x=3, y=2

VC AAMAS Tutorial - May 13, 2019



LP EXAMPLE: SOLVING 

FOR 2-P ZERO-SUM NASH

Recall:

• Mixed Nash Equilibrium always exists

• Even if I know your strategy, in equilibrium I don’t deviate

Given a payoff matrix A:

If Row announces strategy <x1, x2>, then Col gets expected payoffs:

E[“Morality”] = -3x1 + 2x2

E[“Tax-Cuts”] = 1x1 – 1x2

So Col will best respond with max(-3x1 + 2x2, 1x1 – 1x2) …

Morality Tax-Cuts

Economy +3, -3 -1, +1

Society -2, +2 +1, -1

[Example from Daskalakis]

AAMAS Tutorial - May 13, 2019



LP EXAMPLE: SOLVING 

FOR 2-P ZERO-SUM NASH

But if Col gets max(-3x1 + 2x2, 1x1 – 1x2), 

then Row gets -max(-3x1 + 2x2, 1x1 – 1x2) = min(…)

So, if Row must announce, she will choose the strategy:

<x1, x2> = arg max min(3x1 - 2x2, -1x1 + 1x2)

This is just an LP:

maximize z

such that 3x1 - 2x2 > z

-1x1 + 1x2 > z

x1 + x2 = 1

x1, x2 > 0

So Row player is guaranteed to get at least z

AAMAS Tutorial - May 13, 2019



LP EXAMPLE: SOLVING 

FOR 2-P ZERO-SUM NASH

Can set up the same LP for the Col player, to get general LPs:

max zR min zC

s.t. (xA)j > zR for all j s.t. (Ay)i < zC for all i

Σi xi = 1 Σj yj = 1

x > 0 y > 0

Know:

• Row gets at least zR, and exactly zR if Col plays equilibrium response to 
announced strategy (has no incentive to deviate, loses exactly zR = z*)

• Col gets at most zC, and exactly zC if Row plays equilibrium response to 
announced strategy (has no incentive to deviate, gains exactly zC = z*)

So these form an equilibrium: zR = z* = zC, since:

• Row cannot increase gain due to Col being guaranteed max loss zC

• Col cannot decrease loss due to Row being guaranteed min gain zR

AAMAS Tutorial - May 13, 2019



LP EXAMPLE: CORRELATED 

EQUILIBRIA FOR N PLAYERS

Recall:

• A correlated equilibrium is a distribution over pure-strategy profiles so that 
every player wants to follow the recommendation of the arbitrator

Variables are now ps where s is a profile of pure strategies

• Can enumerate!  E.g., p{Row=Dodge, Col=Straight} = 0.3

maximize whatever you like (e.g., social welfare)

subject to 

• for any i, si, si’, Σs-i
p(si, s-i) 

ui(si, s-i) ≥ Σs-i
p(si, s-i) 

ui(si’, s-i) 

• Σs ps = 1

(Minor aside: this has #variables exponential in the input; the dual just has 
#constraints exponential, though, so ellipsoid solves in PTIME.)

AAMAS Tutorial - May 13, 2019



QUADRATIC 

PROGRAMMING

A “QP” is an optimization problem with a quadratic objective 

function and linear constraints.

• Quadratic functions  convex (“looks like a cup”)

• Feasibility polytope also convex

Can also have quadratically-constrained QPs, etc

General objective: min/max  xQx + cTx

Sometimes these problems are easy to solve:

• If Q is positive definite, solvable in polynomial time

Sometimes they’re not:

• If Q is in indefinite, the problem is non-convex and NP-hard

AAMAS Tutorial - May 13, 2019



SO, WHAT IF WE’RE 

NOT CONVEX?

Global optimization problems deal with (un)constrained 

optimization of functions with many local optima:

• Solve to optimality?

• Try hard to find a good local optimum?

Every (non-trivial) discrete problem is non-convex:

• (Try to draw a line between two points in the feasible space.)

Combinatorial optimization: an optimization problem where 

at least some of the variables are discrete

• Still called “linear” if constraints are linear functions of the 

discrete variables, “quadratic,” etc …

AAMAS Tutorial - May 13, 2019



MODIFIED LP FROM 

EARLIER …

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

Optimal solution: x = 2.5, y = 2.5

Solution value: 7.5 + 5 = 12.5

Partial paintings ...?

VC AAMAS Tutorial - May 13, 2019



INTEGER (LINEAR) 

PROGRAM

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0, integer

y ≥ 0, integer
2

0

4

6

8

2 4 6 8

optimal LP 

solution: x=2.5, 

y=2.5 

(objective 12.5)

optimal IP 

solution: x=2, 

y=3 

(objective 12)

VC AAMAS Tutorial - May 13, 2019



MIXED INTEGER 

(LINEAR) PROGRAM

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0, integer
2

0

4

6

8

2 4 6 8

optimal LP 

solution: x=2.5, 

y=2.5 

(objective 12.5)

optimal IP 

solution: x=2, 

y=3 

(objective 12)

optimal MIP 

solution: x=2.75, 

y=2 

(objective 12.25)

VC AAMAS Tutorial - May 13, 2019



COMPLEXITY

Linear programs can be solved in polynomial time

• If we can represent a problem as a compact LP, we can 

solve that problem in polynomial time

• 2-player zero-sum Nash equilibrium computation

General (mixed) integer programs are NP-hard to solve

• General Nash equilibrium computation

• Computation of (most) Stackelberg problems

• Many general allocation problems

[Thanks Zico Kolter]AAMAS Tutorial - May 13, 2019



LP RELAXATION, B&B

Given an IP, the LP relaxation of that IP is the same program with 
any integrality constraints removed.

• In a maximization problem, LP OPT > IP OPT.  Why?

• So, we can use this as a PTIME upper bound during search

Branch and bound (for maximization of binary IPs):

• Start with no variable assignments at the root of a tree

• Split the search space in two by branching on a variable.  
First, set it to 0, see how that affects the objective:

• If upper bound (LPR) of branch is worse than incumbent best 
solution, prune this branch and backtrack (aka set var to 1)

• Otherwise, possibly continue branching until all variables are 
set, or until all subtrees are pruned, or until LP = IP

Tighter LP relaxations  aggressive pruning  smaller trees

AAMAS Tutorial - May 13, 2019



CUTTING PLANES

“Trimming down” the LP polytope – while maintaining all 

feasible IP points – results in tighter bounds:

• Extra linear constraints, called cuts, are valid to add if they 

remove no integral points

Lots of cuts!  Which should we add?

Can cuts be computed quickly?

• Some families of cuts can be generated quickly

• Often just generate and test separability

Sparse coefficients?

AAMAS Tutorial - May 13, 2019



CUTTING PLANE 

METHOD

𝑃 = {𝑥 ∈ 𝑅𝑛: 𝐴𝑥 ≤ 𝑏}

𝑃 𝑃𝐼

𝑐
𝑥0

𝑥1

𝑃𝐼 = conv−hull 𝑃 ∩ 𝑍𝑛

𝑥2

𝑥3

𝑥𝑜𝑝𝑡

𝑥4

KC AAMAS Tutorial - May 13, 2019



CUTTING PLANE METHOD

Starting LP. Start with the LP relaxation of the given IP to 

obtain basic optimal solution x

Repeat until x is integral:

• Add Cuts. Find a linear inequality that is valid for the convex 

hull of integer solutions but violated by x and add it to the LP

• Re-solve LP. Obtain basic optimal solution x

Can integrate into branch and bound (“branch and cut”) –

cuts will tighten the LP relaxation at the root or in the tree.

AAMAS Tutorial - May 13, 2019



PRACTICAL STUFF

{CPLEX, Gurobi, SCIP, COIN-OR}:

• Variety of problems: LPs, MIPs, QPs, QCPs, CSPs, …

• CPLEX and Gurobi are for-profit, but will give free, complete copies for 
academic use (look up “Academic Initiative”)

• SCIP is free for non-commercial use, COIN-OR project is free-free

• Bindings for most of the languages you’d use

cvxopt:

• Fairly general convex optimization problem solver

• Lots of reasonable bindings (e.g., http://www.cvxpy.org/)

{Matlab, Mathematica, Octave}:

• Built in LP solvers, toolkits for pretty much everything else

• If you can hook into a specialized toolkit from here (CPLEX, cvxopt), do it

Bonmin:

• If your problem looks truly crazy – very nonlinear, but with some 
differentiability – look at global solvers like Bonmin
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Social networks



Applications

• Widely used in preventative health and other fields

• Substance abuse, microfinance adoption, HIV prevention, childhood 
nutrition, smoking prevention, cancer screening…



Example: HIV and 
homelessness

• 6,000 homeless youth

• 10x HIV prevalence vs general population

Mayor Eric Garcetti: “the moral and 
humanitarian crisis of our time”



Example: HIV and 
homelessness

• Shelters conduct educational 
interventions

• Resource constraints: work with 4-6 
youth at a time

• Peer leaders: spread message through 
social network



Example: HIV and 
homelessness 

• Limited budget for total peer leaders trained

• Which nodes lead to greatest influence spread?

• Influence maximization problem









Central/popular 
nodes?

(degree: # of 
connections)



“Bridge” nodes?



A mix?



Computational problem

• Limited budget of seed nodes to recruit from a graph 𝐺 = (𝑉, 𝐸)

• For S ⊆ 𝑉, let 𝑓(𝑆) be the expected number of nodes reached when 
𝑆 is recruited as seeds

• Problem:
max
𝑆 ≤𝑘

𝑓(𝑆)



Models of influence spread

• Where does 𝑓 come from?

• Need some theory about how influence spreads on a network

• Many different models, appropriate for different situations



Independent cascade model

• Most common model in the literature

• Each edge (𝑢, 𝑣) has a propagation probability 𝑝𝑢,𝑣

• When 𝑢 is influenced, 𝑣 is influenced w.p. 𝑝𝑢,𝑣

• All activations are independent



Linear threshold model

• Also common

• Each node 𝑣 draws a threshold 𝑡𝑣 ∼ 𝑈[0,1]

• Each edge (𝑢, 𝑣) has a weight 𝑤𝑢,𝑣; σ𝑢→𝑣𝑤𝑢,𝑣 = 1

• 𝑣 activates when total weight of activated neighbors exceeds 𝑡𝑣



Non-progressive models

• ICM/LTM: once activated, stay activated

• Makes sense for information diffusion

• Sometimes, want to model behavior that can “relapse”
• E.g., obesity-interventions



Non-progressive models

• Voter model: 
• Each node has discrete state 𝑥𝑣 ∈ 0,1

• At each step, each node copies a random neighbor

• DeGroot model: 
• Each node has a continuous state 𝑥𝑣 ∈ [0,1]

• At each step, take the average of its neighbors

• These amount to same thing: long-run behavior governed by 
eigenvalues of adjacency matrix



Non-progressive models

• Here: focus on progressive models (ICM/LTM)

• Motivation: information diffusion (awareness/education)



Computational problem

• Limited budget of seed nodes to recruit from a graph 𝐺 = (𝑉, 𝐸)

• For S ⊆ 𝑉, let 𝑓(𝑆) be the expected number of nodes reached when 
𝑆 is recruited as seeds

• Problem:
max
𝑆 ≤𝑘

𝑓(𝑆)

How to solve?



Submodular optimization



Optimizing set functions

• Particular kind of combinatorial optimization problem

• Ground set of items 𝑉

• Choose a subset 𝑆

• Objective: 𝑓(𝑆)

• Constraints: 𝑆 ∈ 𝐼, 𝐼 ⊆ 2𝑉

• E.g., 𝑆 ≤ 𝑘



Optimizing set functions

• Without any additional structure, clearly impossible (NP-hard to do 
anything)

• Can probably encode as a MIP, but solving may be intractable

• What if objective function 𝑓 and feasible set 𝐼 have nice structure?

• Discrete equivalent of convexity?



Key property: submodularity

• Property of set functions which enables efficient optimization

• Diminishing returns:

𝑓 𝐴 ∪ 𝑣 − 𝑓 𝐴 ≤ 𝑓 𝐵 ∪ 𝑣 − 𝑓 𝐵 ∀𝑣, 𝐵 ⊆ 𝐴

• Sometimes, also assume monotone: 𝑓 𝐴 ∪ 𝑣 − 𝑓 𝐴 ≥ 0



Key property: submodularity

• When 𝑓 is submodular, many optimization problems become 
tractable

• For “nice” constraint families, like budget constraint
• More generally, matroid constraints



Submodular optimization: 
greedy

• Simplest possible algorithm 𝑆 = ∅
while 𝑆 ≤ 𝑘:

𝑣∗ = argmax
𝑣∉𝑆

𝑓 𝑆 ∪ 𝑣 − 𝑓(𝑆)

𝑆 = 𝑆 ∪ {𝑣∗}



Submodular optimization: 
greedy

• Simplest possible algorithm

• Bottleneck: evaluating 𝑓

• Some tricks to speed up
• “Accelerated/Lazy” greedy

𝑆 = ∅
while 𝑆 ≤ 𝑘:

𝑣∗ = argmax
𝑣∉𝑆

𝑓 𝑆 ∪ 𝑣 − 𝑓(𝑆)

𝑆 = 𝑆 ∪ {𝑣∗}



Submodular optimization: 
greedy

Theorem [Nemhauser, Wolsey, Fisher 1978]: The greedy algorithm 

obtains a 1 −
1

𝑒
-approximation for maximizing a monotone 

submodular function subject to cardinality constraint.

[Feige 1998]: This is the best possible unless P = NP.



Submodular optimization

• More complicated in many real world settings
• E.g., handling uncertainty

• Still useful starting point for addressing more complex problems


